Non-Linear Time-Advanced Backward Stochastic Partial Differential Equations With Jumps
نویسندگان
چکیده
منابع مشابه
Forward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations
In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jum...
متن کاملNumerical approximation of Backward Stochastic Differential Equations with Jumps
In this note we propose a numerical method to approximate the solution of a Backward Stochastic Differential Equations with Jumps (BSDEJ). This method is based on the construction of a discrete BSDEJ driven by a complete system of three orthogonal discrete time-space martingales, the first a random walk converging to a Brownian motion; the second, another random walk, independent of the first o...
متن کاملMaximum Principles of Markov Regime-Switching Forward-Backward Stochastic Differential Equations with Jumps and Partial Information
Résumé/Abstract: In this talk, we present three versions of maximum principle for a stochastic optimal control problem of Markov regime-switching forward-backward stochastic differential equations with jumps (FBSDEJs). A general sufficient maximum principle for optimal control for a system driven by a Markov regime-switching forward and backward jump-diffusion model is developed. After, an equi...
متن کاملA New Class of Backward Stochastic Partial Differential Equations with Jumps and Applications
We formulate a new class of stochastic partial differential equations (SPDEs), named high-order vector backward SPDEs (B-SPDEs) with jumps, which allow the high-order integral-partial differential operators into both drift and diffusion coefficients. Under certain type of Lipschitz and linear growth conditions, we develop a method to prove the existence and uniqueness of adapted solution to the...
متن کاملBackward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields
We prove an existence and uniqueness result for a general class of backward stochastic partial differential equations with jumps. This is a type of equations which appear as adjoint equations in the maximum principle approach to optimal control of systems described by stochastic partial differential equations driven by Lévy processes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Analysis and Applications
سال: 2015
ISSN: 0736-2994,1532-9356
DOI: 10.1080/07362994.2015.1036166